Pemancar FM
Di antara keuntungan FM adalah bebas dari pengaruh gangguan udara, bandwidth (lebar pita) yang lebih besar, dan fidelitas yang tinggi. Jika dibandingkan dengan sistem AM, maka FM memiliki beberapa keunggulan, diantaranya :
Lebih tahan noise
Frekuensi yang dialokasikan untuk siaran FM berada diantara 88 – 108 MHz, dimana pada wilayah frekuensi ini secara relatif bebas dari gangguan baik atmosfir maupun interferensi yang tidak diharapkan. Jangkauan dari sistem modulasi ini tidak sejauh, jika dibandingkan pada sistem modulasi AM dimana panjang gelombangnya lebih panjang. Sehingga noise yang diakibatkan oleh penurunan daya hampir tidak berpengaruh karena dipancarkan secara LOS (Line Of Sight).
Bandwith yang Lebih Lebar.
Saluran siar FM standar menduduki lebih dari sepuluh kali lebar bandwidth (lebar pita) saluran siar AM. Hal ini disebabkan oleh struktur sideband nonlinear yang lebih kompleks dengan adanya efek-efek (deviasi) sehingga memerlukan bandwidth yang lebih lebar dibanding distribusi linear yang sederhana dari sideband-sideband dalam sistem AM. Band siar FM terletak pada bagian VHF (Very High Frequency) dari spektrum frekuensi di mana tersedia bandwidth yang lebih lebar daripada gelombang dengan panjang medium (MW) pada band siar AM.
Fidelitas Tinggi.
Respon yang seragam terhadap frekuensi audio (paling tidak pada interval 50 Hz sampai 15 KHz), distorsi (harmonik dan intermodulasi) dengan amplitudo sangat rendah, tingkat noise yang sangat rendah, dan respon transien yang bagus sangat diperlukan untuk kinerja Hi-Fi yang baik. Pemakaian saluran FM memberikan respon yang cukup untuk frekuensi audio dan menyediakan hubungan radio dengan noise rendah. Karakteristik yang lain hanyalah ditentukan oleh masalah rancangan perangkatnya saja.
Transmisi Stereo
Alokasi saluran yang lebar dan kemampuan FM untuk menyatukan dengan harmonis beberapa saluran audio pada satu gelombang pembawa, memungkinkan pengembangan sistem penyiaran stereo yang praktis. Ini merupakan sebuah cara bagi industri penyiaran untuk memberikan kualitas reproduksi sebaik atau bahkan lebih baik daripada yang tersedia pada rekaman atau pita stereo. Munculnya compact disc dan perangkat audio digital lainnya akan terus mendorong kalangan industri peralatan dan teknisi siaran lebih jauh untuk memperbaiki kinerja rantai siaran FM secara keseluruhan.
Hak komunikasi Tambahan
Bandwidth yang lebar pada saluran siar FM juga memungkinkan untuk memuat dua saluran data atau audio tambahan, sering disebut Subsidiary Communication Authorization (SCA), bersama dengan transmisi stereo. Saluran SCA menyediakan sumber penerimaan yang penting bagi kebanyakan stasiun radio dan sekaligus sebagai media penyediaan jasa digital dan audio yang berguna untuk khalayak.
Teori Modulasi Frekuensi (FM)
Baik FM (Frekuensi Modulation) maupun PM (Phase Modulation) merupakan kasus khusus dari modulasi sudut (angular modulation). Dalam sistem modulasi sudut frekuensi dan fasa dari gelombang pembawa berubah terhadap waktu menurut fungsi dari sinyal yang dimodulasikan (ditumpangkan). Misal persamaan gelombang pembawa dirumuskan sebagai berikut :
Uc = Ac sin (wc + qc)
Dalam modulasi amplitudo (AM) maka nilai 'Ac' akan berubah-ubah menurut fungsi dari sinyal yang ditumpangkan. Sedangkan dalam modulasi sudut yang diubah-ubah adalah salah satu dari komponen 'wc + qc'. Jika yang diubah-ubah adalah komponen 'wc' maka disebut Frekuensi Modulation (FM), dan jika komponen 'qc' yang diubah-ubah maka disebut Phase Modulation (PM).
Jadi dalam sistem FM, sinyal modulasi (yang ditumpangkan) akan menyebabkan frekuensi dari gelombang pembawa berubah-ubah sesuai perubahan frekuensi dari sinyal modulasi. Sedangkan pada PM perubahan dari sinyal modulasi akan merubah fasa dari gelombang pembawa. Hubungan antara perubahan frekuensi dari gelombang pembawa, perubahan fasa dari gelombang pembawa, dan frekuensi sinyal modulasi dinyatakan sebagai indeks modulasi (m) dimana :
m = Perubahan frekuensi (peak to peak Hz) / frekuensi modulasi (Hz)
Dalam siaran FM, gelombang pembawa harus memiliki perubahan frekuensi yang sesuai dengan amplituda dari sinyal modulasi, tetapi bebas frekuensi sinyal modulasi yang diatur oleh frekuensi modulator.
Pre-Emphasis
Pre-emphasis dipakai dalam pesawat pemancar untuk mencegah pengaruh kecacatan pada sinyal terima. Karena iru komponen pre-emphasis ditempatkan pada awal sebelum sinyal itu sempat masuk pada modulator. Pengaruh kecacatan itu berasal dari differential gain (DG-penguatan yang berbeda) dan differential phase (DP-fasa yang berbeda). Pre-emphasis akan menekan amplitudo dari frekuensi sinyal FM yang lebih rendah pada input.
Dengan penggunaan alat ini ketidaklinearan (cacat) akibat sifat DG dan DP dalam transmisi dapat dikurangi. Nantinya di ujung terima pada demodulator dipasang komponen de-emphasis yang mempunyai fungsi kebalikan dari pre-emphasis.
Pemancar FM
Tujuan dari pemancar FM adalah untuk merubah satu atau lebih sinyal input yang berupa frekuensi audio (AF) menjadi gelombang termodulasi dalam sinyal RF (Radio Frekuensi) yang dimaksudkan sebagai output daya yang kemudian diumpankan ke sistem antena untuk dipancarkan. Dalam bentuk sederhana dapat dipisahkan atas modulator FM dan sebuah power amplifier RF dalam satu unit. Sebenarnya pemancar FM terdiri atas rangkaian blok subsistem yang memiliki fungsi tersendiri, yaitu:
FM exciter merubah sinyal audio menjadi frekuensi RF yang sudah termodulasi
Intermediate Power Amplifier (IPA) dibutuhkan pada beberapa pemancar untuk meningkatkan tingkat daya RF agar mampu menghandle final stage.
Power Amplifier di tingkat akhir menaikkan power dari sinyal sesuai yang dibutuhkan oleh sistem antena.
Catu daya (power supply) merubah input power dari sumber AC menjadi tegangan dan arus DC atau AC yang dibutuhkan oleh tiap subsistem.
Transmitter Control System memonitor, melindungi dan memberikan perintah bagi tiap subsistem sehingga mereka dapat bekerja sama dan memberikan hasil yang diinginkan.
RF lowpass filter membatasi frekuensi yang tidak diingikan dari output pemancar.
Directional coupler yang mengindikasikan bahwa daya sedang dikirimkan atau diterima dari sistem antena.
FM Exciter
Jantung dari pemancar siaran FM terletak pada exciter-nya. Fungsi dari exciter adalah untuk membangkitkan dan memodulasikan gelombang pembawa dengan satu atau lebih input (mono, stereo, SCA) sesuai dengan standar FCC. Gelombang pembawa yang telah dimodulasi kemudian diperkuat oleh wideband amplifier ke level yang dibutuhkan oleh tingkat berikutnya.
Direct FM merupakan teknik modulasi dimana frekuensi dari oscilator dapat diubah sesuai dengan tegangan yang digunakan. Seperti halnya oscilator, disebut voltage tuned oscilator (VTO) dimungkinkan oleh perkembangan dioda tuning varaktor yang dapat merubah kapasitansi menurut perubahan tegangan bias reverse (disebut juga voltage controlled oscillator atau VCO).
Kestabilan frekuensi dari oscillitor direct FM tidak cukup bagus, untuk itu dibutuhkan automotic frekuensi control system (AFC) yang menggunakan sebuah kristal oscillator stabil sebagai frekuensi referensi. Komponen AFC berperan sebagai pengatur frekuensi yang dibangkitkan oscillator lokal untuk dicatukan ke mixer, sehingga frekuensi oscillator menjadi stabil.
Penguat Mikropon dengan Kompresor Tingkat Nada Dinamik
Pada rancangan ini transistor BC547C berlaku sebagai penguat awal sebesar 20 dB untuk sinyal dari mikropon. Tegangan kolektornya mengeset level tegangan DC untuk input op-amp sebesar kurang lebih setengah dari tegangan catu.
Output sinyal audio dari op-amp disearahkan oleh diode D1 dan D2 yang mencatu kapasitor C1 dan C2 berturut-turut positif dan negatif. Beda tegangan antara C1 dan C2 menimbulkan pembuangan muatan yang melewati R3, D3, D4, dan R4. Kapasitor C3 dan C4 mempunyai fungsi ganda yaitu mengurangi riak-riak AC dari arus melalui D3 dan D4 dan menyediakan pembumian (ground) untuk pembagi tegangan yang terdiri atas R5 dan impedansi dari dioda D3 dan D4 ( paralel ).
Impedansi pada kedua dioda tersebut bergantung pada besarnya pembuangan muatan oleh kapasitor C1 dan C2 yang melewati kedua dioda ini. Semakin besar arus pada rangkaian dioda, semakin kecil impedansinya, dan berati semakin kecil pula tegangan input untuk op-amp pada pin noninverting (positif).
Pada saat sinyal voltase di input op-amp kecil, ketidaklinearitasan dioda menciptakan distorsi yang kecil, sebesar 2,5 V p-p di output op-amp.
Pemancar FM 12 Watt
(Bagian II)
Untuk dapat merakit pemancar yang bekerja dengan baik diperlukan SWR Meter, Power Meter, Dummy Load dan Frekuensi Counter. Untuk kalangan penggemar elektronika SWR Meter, Power Meter, Dummy Load dan Frekuensi Counter mungkin terlalu mahal untuk dibeli. Meskipun demikian peralatan ini dapat dibuat sendiri dengan biaya yang sangat murah. (Pembuatan Power Meter dan Dummy Load akan dibahas secara terpisah pada bagian III).
SWR Meter & Power Meter
Pada saluran transmisi yang tidak match selain gelombang datang mengalir pula gelombang pantul. Gelombang datang arahnya dari sumber ke beban (dari pemancar ke antena) sedangkan gelombang pantul dari arah yang sebaliknya (dari antena ke pemancar). Untuk mengukur daya gelombang-gelombang tersebut diperlukan Power Meter. Biasanya pada Power Meter terdapat dua skala, satu untuk daya datang dan satu lagi untuk daya pantul, skala untuk daya pantul lebih kecil dari skala daya datang.
SWR Meter (Standing Wave Ratio Meter – pengukur perbandingan gelombang tegak) digunakan untuk mengukur perbandingan gelombang datang dan gelombang pantul. Dengan kata lain SWR Meter digunakan untuk mengukur seberapa match sebuah sumber dengan beban. Prinsip kerja SWR Meter didasari Power Meter. Jika pada suatu pengukuran hanya terdapat Power Meter maka SWR dapat dihitung dari daya datang (Pf) dan daya pantul (Pr) dengan rumus sebagai berikut :
SWR = (ÖPf + ÖPr)/(ÖPf - ÖPr)
Dari rumus tersebut, pada keadaan match (Pr = 0) akan didapatkan SWR = 1. Untuk keadaan yang tidak match akan didapatkan SWR > 1. Untuk keadaan yang paling buruk dimana semua daya datang dipantulkan kembali (Pf = Pr) akan didapatkan SWR = tak hingga.
Dummy Load
Agar daya bisa dipancarkan semaksimal mungkin, impedansi output dari penguat daya tingkat akhir harus sama dengan impedansi karakteristik saluran transmisi dan impedansi dari antena. Untuk itu diperlukan penalaan pada matching network untuk menyamakan impedansi.
Impedansi dari antena sangat tergantung pada frekuensi. Sedangkan impendasi dari saluran transmisi sama dengan impedansi karakteristik saluran jika panjang saluran transmisi tersebut adalah tak terhingga. Sehingga antena dan saluran transmisi tidak dapat dipakai sebagai acuan untuk menala matching network. Sebagai gantinya diperlukan sebuah beban yang diketahui impedansinya dengan pasti sebagai acuan (Dummy Load), yang harus bebas dari pengaruh frekuensi dan dapat menangani pembuangan daya yang besar (merubah semua daya datang menjadi panas). Impedansi Dummy Load biasanya 50 atau 75 Ohm. Induktor dan kapasitor adalah komponen yang memiliki impedansi yang tergantung frekuensi. Resistor murni tidak terpengaruh frekuensi, meskipun pada kenyataannya resistor tidak hanya bersifat resistif tetapi mempunyai sifat induktif dan kapasitif parasit meskipun kecil.
Dummy Load dapat dibuat sendiri dengan memasang paralel beberapa resistor sehingga didapatkan resistansi dan daya yang diinginkan. Resistor karbon dan resistor film mempunyai induktor parasit yang minimal sehingga banyak dipakai untuk membuat dummy load. Resistor karbon harganya lebih murah dan bisa didapatkan dengan daya lebih besar dibandingkan resistor film.
Memparalelkan beberapa resistor, selain untuk mendapatkan daya besar, dimaksud pula memperkecil induktansi liar dari resistor-resistor tersebut. Sebagai contoh dapat dipakai resistor karbon 300 Ohm / 2 Watt sebayak 6 biji yang dibubungkan secara paralel, untuk mendapatkan Dummy Load dengan daya 12 Watt dan impedansi 50 Ohm (gambar 3).
Gambar 3 Skema Dummy Load
Frekuensi Counter
Frekuensi Counter adalah sebuah alat untuk mengetahui besarnya frekuensi dari sebuah sinyal. Frekuensi Counter sifatnya hanya tambahan dan dapat digantikan dengan radio penerima biasa. Untuk hasil yang lebih baik dapat dipakai radio dengan tuning digital.
Pemancar FM 12 Watt
Pemancar FM yang dibahas pada artikel ini adalah modifikasi dari rangkaian Pemancar FM yang ada di pasaran (tipe S-083 dari Saturn). Rangkaian S-083 hanya menghasilkan daya kurang lebih 1 Watt. Dengan sedikit modifikasi, penyederhanaan dan penambahan booster akan didapatkan daya akhir 12 Watt. Rangkaian S-083 terdiri atas 3 bagian, yaknik bagian osilator, Penyangga tingkat pertama (Buffer 1) dan Penyangga tingkat kedua (buffer 2), lihat di Gambar 4 (Komponen yang diberi tanda * adalah bagian yang dimodifikasi )..
Setelah dicoba, osilator S-083 hasilnya cukup memuaskan, selain stabil osilator tersebut menghasilkan sinyal yang kuat. Karena itu bagian osilator dipakai tanpa modifikasi. Transistor di Tingkat penyangga pertama (Buffer 1) yang semula menggunakan C2053, diganti dengan transistor C930, tipe dengan harga yang jauh lebih murah dan mudah diperoleh dipasaran. Untuk keperluan itu nilai R6 diganti menjadi 10K, untuk memberi bias yang sesuai bagi transistor C930.
Kapasitor 33pF pada kaki kolektor transistor penyangga diganti dengan trimmer C8 bernilai 5-60pF untuk mempermudah penalaan. Transistor di Tingkat penyangga kedua (Buffer 2) yang semula C710 diganti pula dengan C930, dan kapastor pada kolektornya juga diganti dengan trimmer C11 bernilai 5-60 pF. Pada keluaran tingkat kedua diberi tambahan induktor dan kapasitor yang berfungsi sebagai penyesuai impedansi, sehingga Impedansi keluaran dari penyangga tingkat akhir yang kurang lebih 380 Ohm dirubah menjadi 50 Ohm.
Gambar 4
Skema rangkaian Exciter
Saat merakit sebaiknya jangan tergesa-gesa dengan mengerjakan langsung secara keseluruhan, tapi kerjakan tiap bagian agar adanya kesalahan dapat diketahui lebih awal.
Bagian pertama yang dikerjakan adalah osilator, setelah selesai dirakit dapat langsung dicoba, dengan cara menyalakan radio FM pada gelombang yang kosong dan atur volume radio sehingga suara desis terdengar jelas (akan lebih mudah jika dipakai radio yang mempunyai indikator tuning). Putar inti dari koker (L1) kekanan sampai maksimal. (Dengan memutar koker kekanan frekuensi yang dihasilkan osilator makin rendah.) Nyalakan pemancar FM, putar inti koker kekiri sampai desis pada radio FM hilang atau sampai indikator tuning menyala. Jika didapatkan sinyal yang kuat dan stabil, osilator dari pemancar ini telah bekerja dengan baik.
Bagian selanjutnya dapat mulai dirakit, setelah selesai dirakit, hubungkan rangkaian exciter (Gambar 4) seperti diagram Gambar 5. Nyalakan catu daya dan putar kedua trimmer (C8 dan C11) pada penyangga secara bergantian sampai didapatkan daya paling besar dan SWR paling kecil. Kalau rangkaian exciter bekerja dengan baik, akan didapatkan daya kurang lebih 0,25 Watt.
Gambar 5
Diagram blok pengetesan exciter
Sampai tahap ini exciter sudah siap pakai. Untuk mendapatkan daya yang lebih besar lagi dapat dapat ditambahkan rangkaian booster 12 Watt, sehingga akan jarak jangkauan pancaran meningkat sampai 7 kali lipat.
Gambar 6
Skema rangkaian booster
Rangkaian booster 12 Watt pada Gambar 6, terdiri dari dua tingkat penguat transistor yang masing-masing bekerja pada kelas C, masomg-masing input dan output penguat transistor ini diberi rangkaian penyesuai impedansi.
Penguatan tingkat pertama memakai transistor C1970. Rangkaian Penguatan ini mempunyai penguatan daya 9,2dB (8 kali), sehingga dari exciter berdaya 0,25 W seharusnya bisa dihasilkan daya 2 W. Pada kenyataannya dari keluaran penguatan tingkat pertama ini hanya menghasilkan daya 1,75 Watt, hal ini disebabkan adanya kerugian dari rangkaian matching network.
Penguatan tingkat kedua memakai transistor C1971. Rangkaian Penguat ini mempunyai penguatan daya 10dB (10 kali). Sehingga daya dari tingkat pertama yang 1,75 W bisa diperkuat menjadi 17,5 W. Pada kenyataannya daya dari penguatan tingkat kedua hanya mencapai 12,5 Watt. Hal ini disebabkan adanya kerugian dari rangkaian matching network dan keterbatasan dari transistor C1971.
Karena panas yang dihasilkan kedua transistor cukup besar maka jangan lupa memasang pendinginan yang cukup.
Setelah booster selesai dirangkai selanjutnya booster dapat dicoba dan ditala, dengan merangkai exciter, booster, SWR & Power Meter dan Dummy Load seperti Gambar 7. Sebelum catu daya dinyalakan, semua trimmer pada booster diputar pada posisi tengah. Pastikan catu daya yang dipakai dapat memberikan arus lebih dari 3 Ampere. Amati power meter. Power meter seharusnya menunjukkan daya beberapa watt. Putar trimmer pada booster dimulai dari bagian input sampai didapatkan daya paling besar. Ulangi beberapa kali. Seharusnya akan didapatkan daya sampai 12W.
Gambar 7
Diagram blok pengetesan booster
Dari pengukuran didapatkan kebutuhan arus adalah 2,2 Ampere dan daya maksimal yang dapat dicapai adalah 12,5 Watt. Daya yang terlalu besar tentu saja akan memperpendek umur transistor tingkat akhir. Untuk itu disarankan untuk menurunkan daya keluaran dengan menurunkan tegangan supply menjadi 12 Volt.